128 research outputs found

    Relative entropy in multi-phase models of 1d elastodynamics: Convergence of a non-local to a local model

    Full text link
    In this paper we study a local and a non-local regularization of the system of nonlinear elastodynamics with a non-convex energy. We show that solutions of the non-local model converge to those of the local model in a certain regime. The arguments are based on the relative entropy framework and provide an example how local and non-local regularizations may compensate for non-convexity of the energy and enable the use of the relative entropy stability theory -- even if the energy is not quasi- or poly-convex

    Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model

    Get PDF
    We design consistent discontinuous Galerkin finite element schemes for the approximation of a quasi-incompressible two phase flow model of Allen--Cahn/Cahn--Hilliard/Navier--Stokes--Korteweg type which allows for phase transitions. We show that the scheme is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to discrete equivalents of those effects already causing dissipation on the continuous level, that is, there is no artificial numerical dissipation added into the scheme. In this sense the methods are consistent with the energy dissipation of the continuous PDE system

    A posteriori analysis of fully discrete method of lines DG schemes for systems of conservation laws

    Get PDF
    We present reliable a posteriori estimators for some fully discrete schemes applied to nonlinear systems of hyperbolic conservation laws in one space dimension with strictly convex entropy. The schemes are based on a method of lines approach combining discontinuous Galerkin spatial discretization with single- or multi-step methods in time. The construction of the estimators requires a reconstruction in time for which we present a very general framework first for odes and then apply the approach to conservation laws. The reconstruction does not depend on the actual method used for evolving the solution in time. Most importantly it covers in addition to implicit methods also the wide range of explicit methods typically used to solve conservation laws. For the spatial discretization, we allow for standard choices of numerical fluxes. We use reconstructions of the discrete solution together with the relative entropy stability framework, which leads to error control in the case of smooth solutions. We study under which conditions on the numerical flux the estimate is of optimal order pre-shock. While the estimator we derive is computable and valid post-shock for fixed meshsize, it will blow up as the meshsize tends to zero. This is due to a breakdown of the relative entropy framework when discontinuities develop. We conclude with some numerical benchmarking to test the robustness of the derived estimator

    Geometric Error of Finite Volume Schemes for Conservation Laws on Evolving Surfaces

    Get PDF
    This paper studies finite volume schemes for scalar hyperbolic conservation laws on evolving hypersurfaces of R3\mathbb{R}^3. We compare theoretical schemes assuming knowledge of all geometric quantities to (practical) schemes defined on moving polyhedra approximating the surface. For the former schemes error estimates have already been proven, but the implementation of such schemes is not feasible for complex geometries. The latter schemes, in contrast, only require (easily) computable geometric quantities and are thus more useful for actual computations. We prove that the difference between approximate solutions defined by the respective families of schemes is of the order of the mesh width. In particular, the practical scheme converges to the entropy solution with the same rate as the theoretical one. Numerical experiments show that the proven order of convergence is optimal.Comment: 23 pages, 5 figures, to appear in Numerische Mathemati

    Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary

    Full text link
    We study nonlinear hyperbolic conservation laws posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and defined from a prescribed flux field of n-forms depending on a parameter (the unknown variable), a class of equations proposed by LeFloch and Okutmustur in 2008. Our main result is a proof of the convergence of the finite volume method for weak solutions satisfying suitable entropy inequalities. A main difference with previous work is that we allow for slices with a boundary and, in addition, introduce a new formulation of the finite volume method involving the notion of total flux functions. Under a natural global hyperbolicity condition on the flux field and the spacetime and by assuming that the spacetime admits a foliation by compact slices with boundary, we establish an existence and uniqueness theory for the initial and boundary value problem, and we prove a contraction property in a geometrically natural L1-type distance.Comment: 32 page

    On cavitation in Elastodynamics

    Get PDF
    Motivated by the works of Ball (1982) and Pericak-Spector and Spector (1988), we investigate singular solutions of the compressible nonlinear elastodynamics equations. These singular solutions contain discontinuities in the displacement field and can be seen as describing fracture or cavitation. We explore a definition of singular solution via approximating sequences of smooth functions. We use these approximating sequences to investigate the energy of such solutions, taking into account the energy needed to open a crack or hole. In particular, we find that the existence of singular solutions and the finiteness of their energy is strongly related to the behavior of the stress response function for infinite stretching, i.e. the material has to display a sufficient amount of softening. In this note we detail our findings in one space dimension

    Singular limiting induced from continuum solutions and the problem of dynamic cavitation

    Get PDF
    In the works of K.A. Pericak-Spector and S. Spector [Pericak-Spector, Spector 1988, 1997] a class of self-similar solutions are constructed for the equations of radial isotropic elastodynamics that describe cavitating solutions. Cavitating solutions decrease the total mechanical energy and provide a striking example of non-uniqueness of entropy weak solutions (for polyconvex energies) due to point-singularities at the cavity. To resolve this paradox, we introduce the concept of singular limiting induced from continuum solution (or slic-solution), according to which a discontinuous motion is a slic-solution if its averages form a family of smooth approximate solutions to the problem. It turns out that there is an energetic cost for creating the cavity, which is captured by the notion of slic-solution but neglected by the usual entropic weak solutions. Once this cost is accounted for, the total mechanical energy of the cavitating solution is in fact larger than that of the homogeneously deformed state. We also apply the notion of slic-solutions to a one-dimensional example describing the onset of fracture, and to gas dynamics in Langrangean coordinates with Riemann data inducing vacuum in the wave fan

    Stability properties of the Euler-Korteweg system with nonmonotone pressures

    Full text link
    We establish a relative energy framework for the Euler-Korteweg system with non-convex energy. This allows us to prove weak-strong uniqueness and to show convergence to a Cahn-Hilliard system in the large friction limit. We also use relative energy to show that solutions of Euler-Korteweg with convex energy converge to solutions of the Euler system in the vanishing capillarity limit, as long as the latter admits sufficiently regular strong solutions

    A compressible mixture model with phase transition

    Get PDF
    We introduce a new thermodynamically consistent diffuse interface model of Allen--Cahn/Navier--Stokes type for multi-component flows with phase transitions and chemical reactions. For the introduced diffuse interface model, we investigate physically admissible sharp interface limits by matched asymptotic techniques. We consider two scaling regimes, i.e.~a non-dissipative and a dissipative regime, where we recover in the sharp interface limit a generalized Allen-Cahn/Euler system for mixtures with chemical reactions in the bulk phases equipped with admissible interfacial conditions. The interfacial conditions satify, for instance, a Young--Laplace and a Stefan type law
    corecore